
ASSETS4RAIL

Grant Agreement number: 826250—Assets4Rail— H2020-S2RJU-2018/H2020-S2RJU-OC-2018

Project Meeting Rome 8 - 9. 1. 2020

Short presentation of: WP1 Monitoring bridges and tunnels Task 1.1, 1,2 and 1.3 objectives, status and main challenges

WP 1: Monitoring bridges and tunnels [Objectives]

+

Task 1.1 Subsurface tunnel defect detection

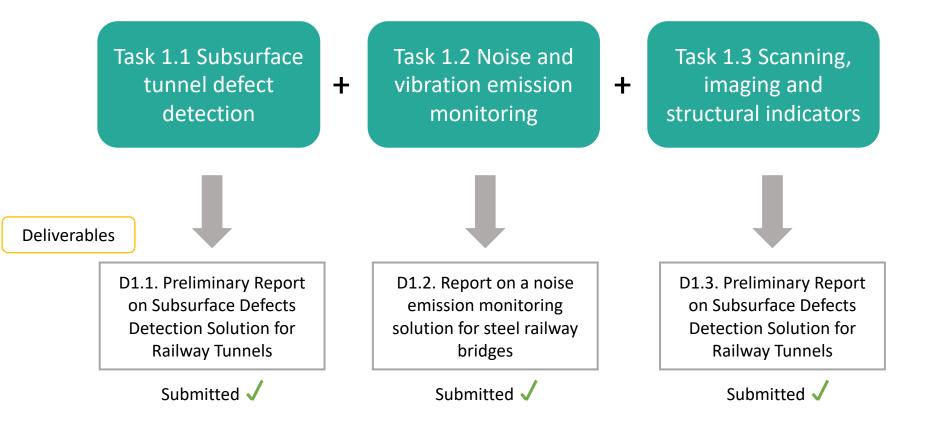
+

- Finding the most suitable methods to inspect tunnel wall condition
- Develop best practice guidelines to interpret and analyse measured data

Task 1.2 Noise and vibration emission monitoring

- Devise a noise monitoring system specifically for railway bridges
- Vibration + Noise monitoring
- Generate the least possible interference with regular rail traffic

Task 1.3 Scanning, imaging and structural indicators


- Use autonomous drones for infrastructure
- Deffect detection, visual scanning and 3D reconstruction of assets using drones

WP 1: Monitoring bridges and tunnels [Deliverables]

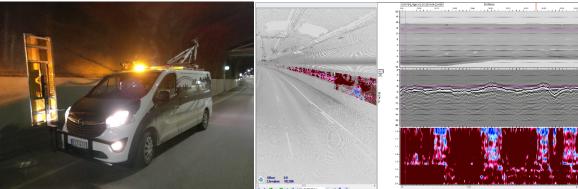
Task 1.1: Subsurface tunnel defect detection [Status]

Current status

- Ran some tunnel survey test in road Tunnel in Finland
- Waiting for access to railway tunnel to start data collection and analysis

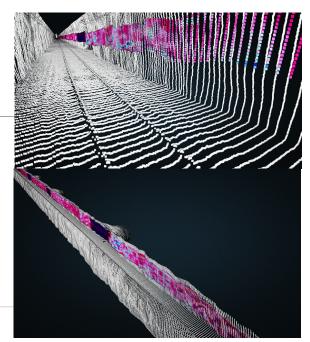
Main results and findings

GPR


- tunnel lining thickness and anomalies
- subsurface moisture

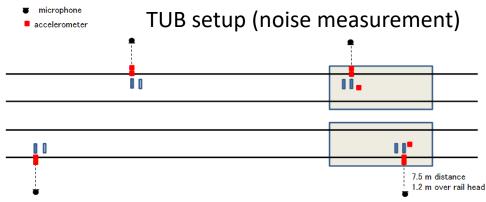
Thermal camera

- lining surface and few centimeters in depth moisture


2D Laser scanner and 3D LIDAR

- 3D model of tunnel

Task 1.2: Noise and vibration emission monitoring [Status]


Current status

Pressig (DE) (7 - 13. 10. 2019) - data analysis expected end of Jan 2020

Two test bridges on a single convenient location.

Task 1.3: Scanning, imaging and structural indicators [Status]

3D Planning and Mapping

Mapping Orbbec Astra depth camera

3D Planning Smooth trajectories in complex environments

Autonomous control Obstacle avoidance Low – light environment

Next Steps:

Optimized planner to maximize asset coverage

Visual Inspection Payload

Requirements:

- Software and hardware trigger
- High update rate
- Low weight
- **High resolution**
- Good results in low light conditions

Install

Multi-camera System

Process

TASK 1.2 Challenge: Reduce cost of the system

Cost reduction and persistent monitoring for Steel Railway Bridges

Current setup	Challenge setup
Noise monitoring:	Noise monitoring:
Commercial Multi-Channel noise measuring solution	??? (4-channel, 40 kHz sample rate, all-
Cost: ~20.000 €	weather, off-the-shelf?) Cost: ??? Suggested ~400 € per channel
Vibration monitoring:	Vibration monitoring:
Commercial Laser Doppler Vibrometer (LDV)	<pre>??? (Contactless vibration monitoring, near-field microphone solution?)</pre>
Cost: ~100.000 ~ 150.000 €	Cost: ??? €, but less then current

Main advantage to lower cost system would be to allow in practice for longer timeframe or even persistent monitoring!

Task 1.3 Challenge: Visual Inspection Payload Design

Requirements

vs.

Modular for different type of UAVs	Custom design
Avoiding occluding images (images occluded by	Maintaining centrum of inertia
the drone structure)	
Low weight	Resistant Structure
Maximum coverage	Minimum Nr. of cameras
Rigid structure (not flexible with the drone's	
movement) to avoid blurring images	

Assumptions:

HFOV ~ 90º VFOV ~ 75º

Example of a custom design for the M100 drone

Bianca Bendris, Eurecat bianca.bendris@eurecat.org

Thank you for your attention!

For further questions please do not hesitate to contact the coordinator:

FUNDACIO EURECAT Avenida Universitat Autonoma 23, Cerdanyola del Valles 08290 (Barcelona) Spain

Contact : Jordi Romero Mail: jordi.romero@eurecat.org

